Lecture 10 : Kolmogorov’s Law of Large Numbers

STAT205 Lecturer: Jim Pitman Scribe: YiFeng Li <yfli@berkeley.edu>

(These notes are a revision of the work of Vinod Prabhakaran, 2002.)

10.1 Law of the Iterated Logarithm

Let X, Xo, ... be i.i.d. with EX; =0, EX? =02 S, = X; + ... + X,,. We know

We will show later

For general interest, we state, without proof, the Law of the Iterated Logarithm:

Sn

lim sup =1 a.s.
n—oo 04/2nlog(logn)
lim inf Sn =1a.s.

n—oc g, /2nlog(logn)
P(S, > (1 +¢)oy/2nlog(logn) i.o.) =0
P(S, > (1 —¢)o+/2nlog(logn) i.0.) =0

10.2 Kolmogorov’s Law of Large Numbers

Theorem 10.1 Let X, X, ... bei.i.d. with E(|X;|) < 00, S, = X1+...+X,,. Then
Sp/n — E(X) a.s. as n — oo.

Note that the theorem is true with just pairwise independence instead of the full
independence assumed here [[1], p.55 (7.1)]. The theorem also has an important
generaliztion to stationary sequences (the ergodic theorem, [[1], p.337 (2.1)]).
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Proof: Step 1: Replace X; by X, =X, —EX (note EX; = EX). Then

S5 gy
n n

So it’s enough to consider EX = 0.

Step 2: Now we assume EX = 0. Introduce truncated variables
X, =Xl (|X,| <n).
Observe that

(To see this, check
P(X, # X, i.0.) =P(|X,| > n i.0.)

ip(\xn\M ZP\X\>n (ZI\X|>n> 00
n=1
since

ZI (1X|>n)= Y 1<|z[+1.

1<n<X

Compare this to the tail sum formula for a random variableX with values in 0,1, 2, ...

EX:inIP’(X:n) :ip(x >n).

Step 3: Center the truncated variables. Define )?n = )?n — E()A(n) .

We will show that
Sn a_s An a':S- NTL
() (507 (5-9)
n n n

where Sn = Xl +X2+- . -—l—Xn and Sn = Xl +)~(2+- . -+)~(n. Then using Kronecker’s
lemma we will show that P(Sn/n — O) =1

(a) comes from the fact that if w € {w c X (w) = X, (w) ev.} (which has probablity
1), then S, (w) — S, (w) is eventually not dependent on n. So

Sy (W) — §n (w)

n

— 0 for such w.
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(b) comes from

S, EX, +EX;+..+EX, X
_Pn B ARX A+ — 0 asn — oo (By analysis and EX; — 0)
n n

SES

But
EX, = E[X, I (1X,| < n)] = E[XT (|X| < n)] — EX as n — oc.

as the integrand is dominated by | X| and note

E(|X]) < o0.

Now, we use Kronecker’s lemma and the £2 convergence theorem to show that
= E(X?)
2 2 < 0.

So

This came from

10.3 Convergence in distribution

Definition 10.2 X, > X if P(X, <z) — P(X <z) for all z at which x —
P(X < x) is continuous. We call this convergence in distribution or weak conver-
gence.

Note. This is really a notion of convergence of probability measures rather than of
convergence of random variables. Now the limit random variable X is only unique

in distribution, not unique almost surely. Obviously, if X 2y and X, 4 x , then
d
X, =Y.
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Theorem 10.3 (Skorokhod) X, L X <= there exists a probability with space
random variables Y, with Y, - X,, Y £ X and Y, “3 Y.

Proof: Take a single uniform variable U and use it to create the Y,, and Y. Let

Check that
FHU) =inf {z: f(z) > u}.

The following proposition is an application of the above.

Proposition 10.4 If X, KR X, then for every bounded continuous function f : R —
R

E[f(Xn)] = E[f(X)].

Proof: Without loss of generality, X,, ©> X. Then f(X,) — f(X) is bounded, so
we can take expectations and use the bounded convergence theorem. [ ]
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