Lecture 10 : Kolmogorov's Law of Large Numbers

STAT205 Lecturer: Jim Pitman Scribe: YiFeng Li <yfli@berkeley.edu>

(These notes are a revision of the work of Vinod Prabhakaran, 2002.)

10.1 Law of the Iterated Logarithm

Let X_1, X_2, \dots be i.i.d. with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2$, $S_n = X_1 + \dots + X_n$. We know

$$\frac{S_n}{n^{\frac{1}{2}+\varepsilon}} \xrightarrow{a.s} 0 \text{ as } n \to \infty.$$

We will show later

$$\frac{S_n}{\sigma n^{\frac{1}{2}}} \stackrel{d}{\longrightarrow} N(0,1) \text{ as } n \to \infty.$$

For general interest, we state, without proof, the Law of the Iterated Logarithm:

$$\limsup_{n \to \infty} \frac{S_n}{\sigma \sqrt{2n \log(\log n)}} = 1 \text{ a.s.}$$

$$\liminf_{n \to \infty} \frac{S_n}{\sigma \sqrt{2n \log(\log n)}} = 1 \text{ a.s.}$$

$$\mathbb{P}(S_n > (1 + \varepsilon)\sigma \sqrt{2n \log(\log n)} \text{ i.o.}) = 0$$

$$\mathbb{P}(S_n > (1 - \varepsilon)\sigma \sqrt{2n \log(\log n)} \text{ i.o.}) = 0$$

10.2 Kolmogorov's Law of Large Numbers

Theorem 10.1 Let X_1, X_2, \ldots be i.i.d. with $\mathbb{E}(|X_i|) < \infty$, $S_n = X_1 + \ldots + X_n$. Then $S_n/n \to \mathbb{E}(X)$ a.s. as $n \to \infty$.

Note that the theorem is true with just pairwise independence instead of the full independence assumed here [[1], p.55 (7.1)]. The theorem also has an important generalization to stationary sequences (the *ergodic theorem*, [[1], p.337 (2.1)]).

Proof: Step 1: Replace X_i by $\widetilde{X}_i = X_i - \mathbb{E}X$ (note $\mathbb{E}X_i = \mathbb{E}X$). Then

$$\frac{\widetilde{S}_n}{n} = \frac{S_n}{n} - \mathbb{E}X.$$

So it's enough to consider $\mathbb{E}X = 0$.

Step 2: Now we assume $\mathbb{E}X = 0$. Introduce truncated variables

$$\widehat{X}_n := X_n I\left(|X_n| \le n\right).$$

Observe that

$$\mathbb{P}(X_n = \widehat{X}_n \ ev.) = 1.$$

(To see this, check

$$\mathbb{P}(X_n \neq \widehat{X}_n \ i.o.) = \mathbb{P}(|X_n| > n \ i.o.)$$

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > n) = \sum_{n=1}^{\infty} \mathbb{P}(|X| > n) = \mathbb{E}\left(\sum_{n=1}^{\infty} I(|X| > n)\right) < \infty$$

since

$$\sum_{n=1}^{\infty} I(|X| > n) = \sum_{1 \le n \le X} 1 \le |x| + 1.$$

Compare this to the tail sum formula for a random variable X with values in 0, 1, 2, ...

$$\mathbb{E}X = \sum_{n=1}^{\infty} n \mathbb{P}(X = n) = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

Step 3: Center the truncated variables. Define $\widetilde{X}_n := \widehat{X}_n - \mathbb{E}(\widehat{X}_n)$. We will show that

$$\left(\frac{S_n}{n} \to 0\right) \stackrel{\text{a.s.}}{\underset{\text{(a)}}{=}} \left(\frac{\hat{S}_n}{n} \to 0\right) \stackrel{\text{a.s.}}{\underset{\text{(b)}}{=}} \left(\frac{\tilde{S}_n}{n} \to 0\right),$$

where $\hat{S}_n = \hat{X}_1 + \hat{X}_2 + \dots + \hat{X}_n$ and $\tilde{S}_n = \tilde{X}_1 + \tilde{X}_2 + \dots + \tilde{X}_n$. Then using Kronecker's lemma we will show that $\mathbb{P}\left(\tilde{S}_n/n \to 0\right) = 1$.

(a) comes from the fact that if $\omega \in \{\omega : X_n(\omega) = \widehat{X}_n(\omega) \ ev.\}$ (which has probablity 1), then $S_n(\omega) - \widehat{S}_n(\omega)$ is eventually not dependent on n. So

$$\frac{S_n(\omega) - \widehat{S}_n(\omega)}{n} \to 0 \text{ for such } \omega.$$

(b) comes from

$$\frac{\widehat{S}_n}{n} - \frac{\widetilde{S}_n}{n} = \frac{\mathbb{E}\widehat{X}_1 + \mathbb{E}\widehat{X}_2 + \dots + \mathbb{E}\widehat{X}_n}{n} \to 0 \text{ as } n \to \infty \text{ (By analysis and } \mathbb{E}\widehat{X}_i \to 0)$$

But

$$\mathbb{E}\widehat{X}_n = \mathbb{E}[X_n I\left(|X_n| \le n\right)] = \mathbb{E}[X I\left(|X| \le n\right)] \to \mathbb{E}X \text{ as } n \to \infty.$$

as the integrand is dominated by |X| and note $E(|X|) < \infty$.

Now, we use Kronecker's lemma and the \mathcal{L}^2 convergence theorem to show that

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}\left(\widetilde{X}_{n}^{2}\right)}{n^{2}} < \infty.$$

$$\mathbb{E}\left(\widetilde{X}_{n}^{2}\right) = \mathbb{E}\left[\left(\widehat{X}_{n} - \mathbb{E}\left(\widehat{X}_{n}\right)\right)^{2}\right] = \mathbb{E}\left[\left(X\mathbf{1}\left(|X| \leq n\right) - \mathbb{E}(X\mathbf{1}\left(|X| \leq n\right))\right)^{2}\right]$$

$$\leq \mathbb{E}\left(X\mathbf{1}\left(|X| \leq n\right)\right)^{2}.$$

So

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}\left(\widetilde{X}_{n}^{2}\right)}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{\mathbb{E}X^{2}I\left(|X| \leq n\right)}{n^{2}} = \mathbb{E}\left(X^{2}\sum_{n=1}^{\infty} \frac{I\left(|X| \leq n\right)}{n^{2}}\right)$$
$$\approx \mathbb{E}\left(\frac{X^{2}}{|X|}\right) = \mathbb{E}(|X|) < \infty.$$

This came from

$$\sum_{n=1}^{\infty} \frac{x^2 1_{(|x| \le n)}}{n^2} \approxeq x^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \approxeq x^2 \frac{1}{|x|} \approxeq |x| \,.$$

10.3 Convergence in distribution

Definition 10.2 $X_n \stackrel{d}{\to} X$ if $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$ for all x at which $x \to \mathbb{P}(X \leq x)$ is continuous. We call this convergence in distribution or weak convergence.

Note. This is really a notion of convergence of probability measures rather than of convergence of random variables. Now the limit random variable X is only unique in distribution, not unique almost surely. Obviously, if $X \stackrel{d}{=} Y$ and $X_n \stackrel{d}{\to} X$, then $X_n \stackrel{d}{\to} Y$.

Theorem 10.3 (Skorokhod) $X_n \stackrel{d}{\to} X \iff there \ exists \ a \ probability \ with \ space random variables <math>Y_n$ with $Y_n \stackrel{d}{=} X_n$, $Y \stackrel{d}{=} X$ and $Y_n \stackrel{a.s.}{\to} Y$.

Proof: Take a single uniform variable U and use it to create the Y_n and Y. Let

$$F_n(x) = \mathbb{P}(X_n \le x),$$

$$F(x) = \mathbb{P}(X \le x),$$

$$Y_n = F_n^{-1}(U),$$

$$Y = F^{-1}(U).$$

Check that

$$F^{-1}(U) = \inf \{ x : f(x) > u \}.$$

The following proposition is an application of the above.

Proposition 10.4 If $X_n \stackrel{d}{\to} X$, then for every bounded continuous function $f: R \to R$

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)].$$

Proof: Without loss of generality, $X_n \stackrel{a.s.}{\to} X$. Then $f(X_n) \to f(X)$ is bounded, so we can take expectations and use the bounded convergence theorem.

References

[1] Richard Durrett. Probability: theory and examples, 3rd edition. Thomson Brooks/Cole, 2005.